light_default_sensor.cpp
Go to the documentation of this file.
1 
7 #include <argos3/core/simulator/simulator.h>
8 #include <argos3/core/simulator/entity/embodied_entity.h>
9 #include <argos3/core/simulator/entity/composable_entity.h>
10 #include <argos3/plugins/simulator/entities/light_entity.h>
11 #include <argos3/plugins/simulator/entities/light_sensor_equipped_entity.h>
12 
13 #include "light_default_sensor.h"
14 
15 namespace argos {
16 
17  /****************************************/
18  /****************************************/
19 
20  static CRange<Real> UNIT(0.0f, 1.0f);
21 
22  /****************************************/
23  /****************************************/
24 
26  m_bShowRays(false),
27  m_pcRNG(NULL),
28  m_bAddNoise(false),
29  m_cSpace(CSimulator::GetInstance().GetSpace()) {}
30 
31  /****************************************/
32  /****************************************/
33 
35  try {
36  m_pcControllableEntity = &(c_entity.GetComponent<CControllableEntity>("controller"));
37  m_pcLightEntity = &(c_entity.GetComponent<CLightSensorEquippedEntity>("light_sensors"));
39  }
40  catch(CARGoSException& ex) {
41  THROW_ARGOSEXCEPTION_NESTED("Can't set robot for the light default sensor", ex);
42  }
43  }
44 
45  /****************************************/
46  /****************************************/
47 
49  try {
50  CCI_LightSensor::Init(t_tree);
51  /* Show rays? */
52  GetNodeAttributeOrDefault(t_tree, "show_rays", m_bShowRays, m_bShowRays);
53  /* Parse noise level */
54  Real fNoiseLevel = 0.0f;
55  GetNodeAttributeOrDefault(t_tree, "noise_level", fNoiseLevel, fNoiseLevel);
56  if(fNoiseLevel < 0.0f) {
57  THROW_ARGOSEXCEPTION("Can't specify a negative value for the noise level of the light sensor");
58  }
59  else if(fNoiseLevel > 0.0f) {
60  m_bAddNoise = true;
61  m_cNoiseRange.Set(-fNoiseLevel, fNoiseLevel);
62  m_pcRNG = CRandom::CreateRNG("argos");
63  }
65  }
66  catch(CARGoSException& ex) {
67  THROW_ARGOSEXCEPTION_NESTED("Initialization error in default light sensor", ex);
68  }
69  }
70 
71  /****************************************/
72  /****************************************/
73 
75  /* Erase readings */
76  for(size_t i = 0; i < m_tReadings.size(); ++i) m_tReadings[i] = 0.0f;
77  /* Ray used for scanning the environment for obstacles */
78  CRay3 cScanningRay;
79  CVector3 cRayStart;
80  CVector3 cSensorToLight;
81  /* Buffers to contain data about the intersection */
82  SEmbodiedEntityIntersectionItem sIntersection;
83  /* Get the map of light entities */
84  CSpace::TMapPerTypePerId::iterator itLights = m_cSpace.GetEntityMapPerTypePerId().find("light");
85  if (itLights != m_cSpace.GetEntityMapPerTypePerId().end()) {
86  CSpace::TMapPerType& mapLights = itLights->second;
87  /* Go through the sensors */
88  for(UInt32 i = 0; i < m_tReadings.size(); ++i) {
89  /* Set ray start */
90  cRayStart = m_pcLightEntity->GetSensor(i).Position;
92  cRayStart += m_pcLightEntity->GetSensor(i).Anchor.Position;
93  /* Go through all the light entities */
94  for(CSpace::TMapPerType::iterator it = mapLights.begin();
95  it != mapLights.end();
96  ++it) {
97  /* Get a reference to the light */
98  CLightEntity& cLight = *any_cast<CLightEntity*>(it->second);
99  /* Consider the light only if it has non zero intensity */
100  if(cLight.GetIntensity() > 0.0f) {
101  /* Set ray end to light position */
102  cScanningRay.Set(cRayStart, cLight.GetPosition());
103  /* Check occlusions */
104  if(! GetClosestEmbodiedEntityIntersectedByRay(sIntersection,
105  cScanningRay)) {
106  /* No occlusion, the light is visibile */
107  if(m_bShowRays) {
108  m_pcControllableEntity->AddCheckedRay(false, cScanningRay);
109  }
110  /* Calculate reading */
111  cScanningRay.ToVector(cSensorToLight);
112  m_tReadings[i] += CalculateReading(cSensorToLight.Length(),
113  cLight.GetIntensity());
114  }
115  else {
116  /* There is an occlusion, the light is not visible */
117  if(m_bShowRays) {
119  sIntersection.TOnRay);
120  m_pcControllableEntity->AddCheckedRay(true, cScanningRay);
121  }
122  }
123  }
124  }
125  /* Apply noise to the sensor */
126  if(m_bAddNoise) {
128  }
129  /* Trunc the reading between 0 and 1 */
130  UNIT.TruncValue(m_tReadings[i]);
131  }
132  }
133  else {
134  /* There are no lights in the environment */
135  if(m_bAddNoise) {
136  /* Go through the sensors */
137  for(UInt32 i = 0; i < m_tReadings.size(); ++i) {
138  /* Apply noise to the sensor */
140  /* Trunc the reading between 0 and 1 */
141  UNIT.TruncValue(m_tReadings[i]);
142  }
143  }
144  }
145  }
146 
147  /****************************************/
148  /****************************************/
149 
151  for(UInt32 i = 0; i < GetReadings().size(); ++i) {
152  m_tReadings[i] = 0.0f;
153  }
154  }
155 
156  /****************************************/
157  /****************************************/
158 
160  return (f_intensity * f_intensity) / (f_distance * f_distance);
161  }
162 
163  /****************************************/
164  /****************************************/
165 
167  "light", "default",
168  "Carlo Pinciroli [ilpincy@gmail.com]",
169  "1.0",
170  "A generic light sensor.",
171  "This sensor accesses a set of light sensors. The sensors all return a value\n"
172  "between 0 and 1, where 0 means nothing within range and 1 means the perceived\n"
173  "light saturates the sensor. Values between 0 and 1 depend on the distance of\n"
174  "the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n"
175  "distance between a sensor and the light, and I is the reference intensity of the\n"
176  "perceived light. The reference intensity corresponds to the minimum distance at\n"
177  "which the light saturates a sensor. The reference intensity depends on the\n"
178  "individual light, and it is set with the \"intensity\" attribute of the light\n"
179  "entity. In case multiple lights are present in the environment, each sensor\n"
180  "reading is calculated as the sum of the individual readings due to each light.\n"
181  "In other words, light wave interference is not taken into account. In\n"
182  "controllers, you must include the ci_light_sensor.h header.\n\n"
183  "REQUIRED XML CONFIGURATION\n\n"
184  " <controllers>\n"
185  " ...\n"
186  " <my_controller ...>\n"
187  " ...\n"
188  " <sensors>\n"
189  " ...\n"
190  " <light implementation=\"default\" />\n"
191  " ...\n"
192  " </sensors>\n"
193  " ...\n"
194  " </my_controller>\n"
195  " ...\n"
196  " </controllers>\n\n"
197  "OPTIONAL XML CONFIGURATION\n\n"
198  "It is possible to draw the rays shot by the light sensor in the OpenGL\n"
199  "visualization. This can be useful for sensor debugging but also to understand\n"
200  "what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n"
201  "they are not obstructed and in purple when they are. In case a ray is\n"
202  "obstructed, a black dot is drawn where the intersection occurred.\n"
203  "To turn this functionality on, add the attribute \"show_rays\" as in this\n"
204  "example:\n\n"
205  " <controllers>\n"
206  " ...\n"
207  " <my_controller ...>\n"
208  " ...\n"
209  " <sensors>\n"
210  " ...\n"
211  " <light implementation=\"default\"\n"
212  " show_rays=\"true\" />\n"
213  " ...\n"
214  " </sensors>\n"
215  " ...\n"
216  " </my_controller>\n"
217  " ...\n"
218  " </controllers>\n\n"
219  "It is possible to add uniform noise to the sensors, thus matching the\n"
220  "characteristics of a real robot better. This can be done with the attribute\n"
221  "\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n"
222  "reading. The final sensor reading is always normalized in the [0-1] range.\n\n"
223  " <controllers>\n"
224  " ...\n"
225  " <my_controller ...>\n"
226  " ...\n"
227  " <sensors>\n"
228  " ...\n"
229  " <light implementation=\"default\"\n"
230  " noise_level=\"0.1\" />\n"
231  " ...\n"
232  " </sensors>\n"
233  " ...\n"
234  " </my_controller>\n"
235  " ...\n"
236  " </controllers>\n\n"
237  "OPTIONAL XML CONFIGURATION\n\n"
238  "None.\n",
239  "Usable"
240  );
241 
242 }
An entity that contains a pointer to the user-defined controller.
CRandom::CRNG * m_pcRNG
Random number generator.
A 3D vector class.
Definition: vector3.h:29
void Set(const CVector3 &c_start, const CVector3 &c_end)
Definition: ray3.h:67
virtual void SetRobot(CComposableEntity &c_entity)
Sets the entity associated to this sensor.
void GetNodeAttributeOrDefault(TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
Returns the value of a node's attribute, or the passed default value.
float Real
Collects all ARGoS code.
Definition: datatypes.h:39
#define THROW_ARGOSEXCEPTION(message)
This macro throws an ARGoS exception with the passed message.
CVector3 & Rotate(const CQuaternion &c_quaternion)
Rotates this vector by the given quaternion.
Definition: vector3.cpp:25
void TruncValue(T &t_value) const
Definition: range.h:97
void Set(const T &t_min, const T &t_max)
Definition: range.h:68
CQuaternion Orientation
The orientation of the anchor wrt the global coordinate system.
Definition: physics_model.h:53
ticpp::Element TConfigurationNode
The ARGoS configuration XML node.
TMapPerTypePerId & GetEntityMapPerTypePerId()
Returns a nested map of entities, ordered by type and by id.
Definition: space.h:191
std::vector< Real > m_tReadings
#define THROW_ARGOSEXCEPTION_NESTED(message, nested)
This macro throws an ARGoS exception with the passed message and nesting the passed exception...
virtual void Init(TConfigurationNode &t_tree)
Initializes the sensor from the XML configuration tree.
const CVector3 & GetPosition() const
T * any_cast(CAny *pc_any)
Performs a cast on the any type to the desired type, when the any type is passed by non-const pointer...
Definition: any.h:148
CControllableEntity * m_pcControllableEntity
Reference to controllable entity associated to this sensor.
Real Length() const
Returns the length of this vector.
Definition: vector3.h:205
Real GetIntensity() const
Definition: light_entity.h:37
CLightSensorEquippedEntity * m_pcLightEntity
Reference to light sensor equipped entity associated to this sensor.
unsigned int UInt32
32-bit unsigned integer.
Definition: datatypes.h:97
CRadians Uniform(const CRange< CRadians > &c_range)
Returns a random value from a uniform distribution.
Definition: rng.cpp:87
Basic class for an entity that contains other entities.
CRange< Real > m_cNoiseRange
Noise range.
std::map< std::string, CAny, std::less< std::string > > TMapPerType
A map of entities indexed by type description.
Definition: space.h:53
void AddIntersectionPoint(const CRay3 &c_ray, Real f_t_on_ray)
Adds an intersection point to the list.
virtual void Init(TConfigurationNode &t_node)
Initializes the sensor from the XML configuration tree.
Definition: ci_sensor.h:54
The exception that wraps all errors in ARGoS.
CSpace & m_cSpace
Reference to the space.
bool GetClosestEmbodiedEntityIntersectedByRay(SEmbodiedEntityIntersectionItem &s_item, const CRay3 &c_ray)
Returns the closest intersection with an embodied entity to the ray start.
bool m_bAddNoise
Whether to add noise or not.
bool m_bShowRays
Flag to show rays in the simulator.
CVector3 & ToVector(CVector3 &c_buffer) const
Definition: ray3.h:100
CVector3 Position
The position of the anchor wrt the global coordinate system.
Definition: physics_model.h:51
static CRNG * CreateRNG(const std::string &str_category)
Creates a new RNG inside the given category.
Definition: rng.cpp:326
virtual Real CalculateReading(Real f_distance, Real f_intensity)
Calculates the light reading resulting from a light source at the given distance. ...
const std::vector< Real > & GetReadings() const
void AddCheckedRay(bool b_obstructed, const CRay3 &c_ray)
Adds a ray to the list of checked rays.
The namespace containing all the ARGoS related code.
Definition: ci_actuator.h:12
virtual void Reset()
Resets the sensor to the state it had just after Init().
The core class of ARGOS.
Definition: simulator.h:62
CEntity & GetComponent(const std::string &str_component)
Returns the component with the passed string label.
virtual void Update()
Updates the state of the entity associated to this sensor.
REGISTER_SENSOR(CEyeBotLightRotZOnlySensor,"eyebot_light","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The eye-bot light sensor (optimized for 2D).","This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and 1, where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor. Values between 0 and 1 depend on the distance of\n""the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n""distance between a sensor and the light, and I is the reference intensity of the\n""perceived light. The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor. The reference intensity depends on the\n""individual light, and it is set with the \"intensity\" attribute of the light\n""entity. In case multiple lights are present in the environment, each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other words, light wave interference is not taken into account. In\n""controllers, you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")