footbot_base_ground_rotzonly_sensor.cpp
Go to the documentation of this file.
1 
7 #include <argos3/core/simulator/simulator.h>
8 #include <argos3/core/simulator/entity/composable_entity.h>
9 #include <argos3/core/simulator/entity/embodied_entity.h>
10 #include <argos3/core/simulator/entity/floor_entity.h>
11 #include <argos3/plugins/simulator/entities/ground_sensor_equipped_entity.h>
12 
14 
15 namespace argos {
16 
17  /****************************************/
18  /****************************************/
19 
20  static CRange<Real> UNIT(0.0f, 1.0f);
21 
22  /****************************************/
23  /****************************************/
24 
26  m_pcEmbodiedEntity(NULL),
27  m_pcFloorEntity(NULL),
28  m_pcGroundSensorEntity(NULL),
29  m_pcRNG(NULL),
30  m_bAddNoise(false),
31  m_cSpace(CSimulator::GetInstance().GetSpace()) {}
32 
33  /****************************************/
34  /****************************************/
35 
37  m_pcEmbodiedEntity = &(c_entity.GetComponent<CEmbodiedEntity>("body"));
38  m_pcGroundSensorEntity = &(c_entity.GetComponent<CGroundSensorEquippedEntity>("ground_sensors"));
41  }
42 
43  /****************************************/
44  /****************************************/
45 
47  try {
49  /* Parse noise level */
50  Real fNoiseLevel = 0.0f;
51  GetNodeAttributeOrDefault(t_tree, "noise_level", fNoiseLevel, fNoiseLevel);
52  if(fNoiseLevel < 0.0f) {
53  THROW_ARGOSEXCEPTION("Can't specify a negative value for the noise level of the foot-bot ground sensor");
54  }
55  else if(fNoiseLevel > 0.0f) {
56  m_bAddNoise = true;
57  m_cNoiseRange.Set(-fNoiseLevel, fNoiseLevel);
58  m_pcRNG = CRandom::CreateRNG("argos");
59  }
60  m_tReadings.resize(8);
61  }
62  catch(CARGoSException& ex) {
63  THROW_ARGOSEXCEPTION_NESTED("Initialization error in foot-bot rotzonly ground sensor", ex);
64  }
65  }
66 
67  /****************************************/
68  /****************************************/
69 
71  /*
72  * We make the assumption that the robot is rotated only wrt to Z
73  */
74  /* Get robot position and orientation */
75  const CVector3& cEntityPos = m_pcEmbodiedEntity->GetOriginAnchor().Position;
77  CRadians cRotZ, cRotY, cRotX;
78  cEntityRot.ToEulerAngles(cRotZ, cRotY, cRotX);
79  /* Set robot center */
80  CVector2 cCenterPos(cEntityPos.GetX(), cEntityPos.GetY());
81  /* Position of sensor on the ground after rototranslation */
82  CVector2 cSensorPos;
83  /* Go through the sensors */
84  for(UInt32 i = 0; i < m_tReadings.size(); ++i) {
85  /* Calculate sensor position on the ground */
86  cSensorPos = m_pcGroundSensorEntity->GetSensor(i+4).Offset;
87  cSensorPos.Rotate(cRotZ);
88  cSensorPos += cCenterPos;
89  /* Get the color */
90  const CColor& cColor = m_pcFloorEntity->GetColorAtPoint(cSensorPos.GetX(),
91  cSensorPos.GetY());
92  /* Set the reading */
93  m_tReadings[i].Value = cColor.ToGrayScale() / 255.0f;
94  /* Apply noise to the sensor */
95  if(m_bAddNoise) {
97  }
98  /* Set the final reading */
99  m_tReadings[i].Value = m_tReadings[i].Value < 0.5f ? 0.0f : 1.0f;
100  }
101  }
102 
103  /****************************************/
104  /****************************************/
105 
107  for(UInt32 i = 0; i < GetReadings().size(); ++i) {
108  m_tReadings[i].Value = 0.0f;
109  }
110  }
111 
112  /****************************************/
113  /****************************************/
114 
116  "footbot_base_ground", "rot_z_only",
117  "Carlo Pinciroli [ilpincy@gmail.com]",
118  "1.0",
119  "The foot-bot base ground sensor.",
120  "This sensor accesses the foot-bot base ground sensor. For a complete description\n"
121  "of its usage, refer to the ci_footbot_base_ground_sensor.h interface. For the XML\n"
122  "configuration, refer to the default ground sensor.\n",
123  "Usable"
124  );
125 
126 }
A 3D vector class.
Definition: vector3.h:29
virtual void Init(TConfigurationNode &t_tree)
Initializes the sensor from the XML configuration tree.
void GetNodeAttributeOrDefault(TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
Returns the value of a node's attribute, or the passed default value.
CColor GetColorAtPoint(Real f_x, Real f_y)
Returns the color at the given point.
Definition: floor_entity.h:99
float Real
Collects all ARGoS code.
Definition: datatypes.h:39
CFloorEntity * m_pcFloorEntity
Reference to floor entity.
#define THROW_ARGOSEXCEPTION(message)
This macro throws an ARGoS exception with the passed message.
Real GetX() const
Returns the x coordinate of this vector.
Definition: vector3.h:93
void Set(const T &t_min, const T &t_max)
Definition: range.h:68
Real GetY() const
Returns the y coordinate of this vector.
Definition: vector3.h:109
CQuaternion Orientation
The orientation of the anchor wrt the global coordinate system.
Definition: physics_model.h:53
ticpp::Element TConfigurationNode
The ARGoS configuration XML node.
This entity is a link to a body in the physics engine.
#define THROW_ARGOSEXCEPTION_NESTED(message, nested)
This macro throws an ARGoS exception with the passed message and nesting the passed exception...
CGroundSensorEquippedEntity * m_pcGroundSensorEntity
Reference to ground sensor equipped entity associated to this sensor.
It defines the basic type CRadians, used to store an angle value in radians.
Definition: angles.h:42
unsigned int UInt32
32-bit unsigned integer.
Definition: datatypes.h:97
CRadians Uniform(const CRange< CRadians > &c_range)
Returns a random value from a uniform distribution.
Definition: rng.cpp:87
Basic class for an entity that contains other entities.
A 2D vector class.
Definition: vector2.h:25
void ToEulerAngles(CRadians &c_z_angle, CRadians &c_y_angle, CRadians &c_x_angle) const
Definition: quaternion.h:172
virtual void Init(TConfigurationNode &t_node)
Initializes the sensor from the XML configuration tree.
Definition: ci_sensor.h:54
The exception that wraps all errors in ARGoS.
Real ToGrayScale() const
Returns the color in grayscale.
Definition: color.h:68
The basic color type.
Definition: color.h:25
virtual void Update()
Updates the state of the entity associated to this sensor.
CVector3 Position
The position of the anchor wrt the global coordinate system.
Definition: physics_model.h:51
static CRNG * CreateRNG(const std::string &str_category)
Creates a new RNG inside the given category.
Definition: rng.cpp:326
virtual void SetRobot(CComposableEntity &c_entity)
Sets the entity associated to this sensor.
The namespace containing all the ARGoS related code.
Definition: ci_actuator.h:12
The core class of ARGOS.
Definition: simulator.h:62
CFloorEntity & GetFloorEntity()
Returns the floor entity.
Definition: space.h:218
CEmbodiedEntity * m_pcEmbodiedEntity
Reference to embodied entity associated to this sensor.
CVector2 & Rotate(const CRadians &c_angle)
Rotates this vector by the wanted angle.
Definition: vector2.h:169
virtual void Reset()
Resets the sensor to the state it had just after Init().
CRandom::CRNG * m_pcRNG
Random number generator.
const SAnchor & GetOriginAnchor() const
Returns a const reference to the origin anchor associated to this entity.
CEntity & GetComponent(const std::string &str_component)
Returns the component with the passed string label.
REGISTER_SENSOR(CEyeBotLightRotZOnlySensor,"eyebot_light","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The eye-bot light sensor (optimized for 2D).","This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and 1, where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor. Values between 0 and 1 depend on the distance of\n""the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n""distance between a sensor and the light, and I is the reference intensity of the\n""perceived light. The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor. The reference intensity depends on the\n""individual light, and it is set with the \"intensity\" attribute of the light\n""entity. In case multiple lights are present in the environment, each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other words, light wave interference is not taken into account. In\n""controllers, you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <eyebot_light implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")